In this work, we present a novel framework built to simplify 3D asset generation for amateur users. To enable interactive generation, our method supports a variety of input modalities that can be easily provided by a human, including images, text, partially observed shapes and combinations of these, further allowing to adjust the strength of each input. At the core of our approach is an encoder-decoder, compressing 3D shapes into a compact latent representation, upon which a diffusion model is learned. To enable a variety of multi-modal inputs, we employ task-specific encoders with dropout followed by a cross-attention mechanism. Due to its flexibility, our model naturally supports a variety of tasks, outperforming prior works on shape completion, image-based 3D reconstruction, and text-to-3D. Most interestingly, our model can combine all these tasks into one swiss-army-knife tool, enabling the user to perform shape generation using incomplete shapes, images, and textual descriptions at the same time, providing the relative weights for each input and facilitating interactivity. Despite our approach being shape-only, we further show an efficient method to texture the generated shape using large-scale text-to-image models.
translated by 谷歌翻译
Human pose estimation has been widely applied in various industries. While recent decades have witnessed the introduction of many advanced two-dimensional (2D) human pose estimation solutions, three-dimensional (3D) human pose estimation is still an active research field in computer vision. Generally speaking, 3D human pose estimation methods can be divided into two categories: single-stage and two-stage. In this paper, we focused on the 2D-to-3D lifting process in the two-stage methods and proposed a more advanced baseline model for 3D human pose estimation, based on the existing solutions. Our improvements include optimization of machine learning models and multiple parameters, as well as introduction of a weighted loss to the training model. Finally, we used the Human3.6M benchmark to test the final performance and it did produce satisfactory results.
translated by 谷歌翻译
Multilingual BERT (mBERT) has demonstrated considerable cross-lingual syntactic ability, whereby it enables effective zero-shot cross-lingual transfer of syntactic knowledge. The transfer is more successful between some languages, but it is not well understood what leads to this variation and whether it fairly reflects difference between languages. In this work, we investigate the distributions of grammatical relations induced from mBERT in the context of 24 typologically different languages. We demonstrate that the distance between the distributions of different languages is highly consistent with the syntactic difference in terms of linguistic formalisms. Such difference learnt via self-supervision plays a crucial role in the zero-shot transfer performance and can be predicted by variation in morphosyntactic properties between languages. These results suggest that mBERT properly encodes languages in a way consistent with linguistic diversity and provide insights into the mechanism of cross-lingual transfer.
translated by 谷歌翻译
Effective data imputation demands rich latent ``structure" discovery capabilities from ``plain" tabular data. Recent advances in graph neural networks-based data imputation solutions show their strong structure learning potential by directly translating tabular data as bipartite graphs. However, due to a lack of relations between samples, those solutions treat all samples equally which is against one important observation: ``similar sample should give more information about missing values." This paper presents a novel Iterative graph Generation and Reconstruction framework for Missing data imputation(IGRM). Instead of treating all samples equally, we introduce the concept: ``friend networks" to represent different relations among samples. To generate an accurate friend network with missing data, an end-to-end friend network reconstruction solution is designed to allow for continuous friend network optimization during imputation learning. The representation of the optimized friend network, in turn, is used to further optimize the data imputation process with differentiated message passing. Experiment results on eight benchmark datasets show that IGRM yields 39.13% lower mean absolute error compared with nine baselines and 9.04% lower than the second-best.
translated by 谷歌翻译
Hashing has been widely researched to solve the large-scale approximate nearest neighbor search problem owing to its time and storage superiority. In recent years, a number of online hashing methods have emerged, which can update the hash functions to adapt to the new stream data and realize dynamic retrieval. However, existing online hashing methods are required to update the whole database with the latest hash functions when a query arrives, which leads to low retrieval efficiency with the continuous increase of the stream data. On the other hand, these methods ignore the supervision relationship among the examples, especially in the multi-label case. In this paper, we propose a novel Fast Online Hashing (FOH) method which only updates the binary codes of a small part of the database. To be specific, we first build a query pool in which the nearest neighbors of each central point are recorded. When a new query arrives, only the binary codes of the corresponding potential neighbors are updated. In addition, we create a similarity matrix which takes the multi-label supervision information into account and bring in the multi-label projection loss to further preserve the similarity among the multi-label data. The experimental results on two common benchmarks show that the proposed FOH can achieve dramatic superiority on query time up to 6.28 seconds less than state-of-the-art baselines with competitive retrieval accuracy.
translated by 谷歌翻译
It has been witnessed that masked image modeling (MIM) has shown a huge potential in self-supervised learning in the past year. Benefiting from the universal backbone vision transformer, MIM learns self-supervised visual representations through masking a part of patches of the image while attempting to recover the missing pixels. Most previous works mask patches of the image randomly, which underutilizes the semantic information that is beneficial to visual representation learning. On the other hand, due to the large size of the backbone, most previous works have to spend much time on pre-training. In this paper, we propose \textbf{Attention-driven Masking and Throwing Strategy} (AMT), which could solve both problems above. We first leverage the self-attention mechanism to obtain the semantic information of the image during the training process automatically without using any supervised methods. Masking strategy can be guided by that information to mask areas selectively, which is helpful for representation learning. Moreover, a redundant patch throwing strategy is proposed, which makes learning more efficient. As a plug-and-play module for masked image modeling, AMT improves the linear probing accuracy of MAE by $2.9\% \sim 5.9\%$ on CIFAR-10/100, STL-10, Tiny ImageNet, and ImageNet-1K, and obtains an improved performance with respect to fine-tuning accuracy of MAE and SimMIM. Moreover, this design also achieves superior performance on downstream detection and segmentation tasks.
translated by 谷歌翻译
In terms of artificial intelligence, there are several security and privacy deficiencies in the traditional centralized training methods of machine learning models by a server. To address this limitation, federated learning (FL) has been proposed and is known for breaking down ``data silos" and protecting the privacy of users. However, FL has not yet gained popularity in the industry, mainly due to its security, privacy, and high cost of communication. For the purpose of advancing the research in this field, building a robust FL system, and realizing the wide application of FL, this paper sorts out the possible attacks and corresponding defenses of the current FL system systematically. Firstly, this paper briefly introduces the basic workflow of FL and related knowledge of attacks and defenses. It reviews a great deal of research about privacy theft and malicious attacks that have been studied in recent years. Most importantly, in view of the current three classification criteria, namely the three stages of machine learning, the three different roles in federated learning, and the CIA (Confidentiality, Integrity, and Availability) guidelines on privacy protection, we divide attack approaches into two categories according to the training stage and the prediction stage in machine learning. Furthermore, we also identify the CIA property violated for each attack method and potential attack role. Various defense mechanisms are then analyzed separately from the level of privacy and security. Finally, we summarize the possible challenges in the application of FL from the aspect of attacks and defenses and discuss the future development direction of FL systems. In this way, the designed FL system has the ability to resist different attacks and is more secure and stable.
translated by 谷歌翻译
Adversarial training is one of the most powerful methods to improve the robustness of pre-trained language models (PLMs). However, this approach is typically more expensive than traditional fine-tuning because of the necessity to generate adversarial examples via gradient descent. Delving into the optimization process of adversarial training, we find that robust connectivity patterns emerge in the early training phase (typically $0.15\sim0.3$ epochs), far before parameters converge. Inspired by this finding, we dig out robust early-bird tickets (i.e., subnetworks) to develop an efficient adversarial training method: (1) searching for robust tickets with structured sparsity in the early stage; (2) fine-tuning robust tickets in the remaining time. To extract the robust tickets as early as possible, we design a ticket convergence metric to automatically terminate the searching process. Experiments show that the proposed efficient adversarial training method can achieve up to $7\times \sim 13 \times$ training speedups while maintaining comparable or even better robustness compared to the most competitive state-of-the-art adversarial training methods.
translated by 谷歌翻译
Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization.Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.
translated by 谷歌翻译
Human reading comprehension often requires reasoning of event semantic relations in narratives, represented by Event-centric Question-Answering (QA). To address event-centric QA, we propose a novel QA model with contrastive learning and invertible event transformation, call TranCLR. Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines. The transformation matrix is fine-tuned with the annotated event relation types between events that occurred in questions and those in answers, using event-aware question vectors. Experimental results on the Event Semantic Relation Reasoning (ESTER) dataset show significant improvements in both generative and extractive settings compared to the existing strong baselines, achieving over 8.4% gain in the token-level F1 score and 3.0% gain in Exact Match (EM) score under the multi-answer setting. Qualitative analysis reveals the high quality of the generated answers by TranCLR, demonstrating the feasibility of injecting event knowledge into QA model learning. Our code and models can be found at https://github.com/LuJunru/TranCLR.
translated by 谷歌翻译